Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur @] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08	Rev 1.10	<ec></ec>	<18/07/2022>

CONTINUOUS INTERNAL EVALUATION - 3

Dept:EC	Sem / Div:6 A&B	Sub:Microwave and Antennas	S Code:18EC63
Date:22/07/2022	Time: 9:30- 11:00 am	Max Marks: 50	Elective:N

Note: Answer any 2 full questions, choosing one full question from each part.

Q	N	Questions	Marks	RBT	CO's
	PART A				
1		Derive the expressions for the far field component of short dipole.	10	L3	CO3
	b	State and prove power theorem.	7	L3	CO3
	C	A 16 turn helical beam antenna has a circumference of λ and a turn spacing of $\lambda/4$. Find a. HPBW, b. Axial ratio and c. directivity	8	L3	CO4
		OR			
2		Explain the following terms with respect to antennas. i)Beam area ii)Radiation intensity iii)Beam efficiency iv)Directivity, v) Radiation resistance.	10	L2	CO3
		Calculate the exact directivity for a 3 dimensional source having the pattern $U = U_m \sin^2 \theta \sin^3 \Phi$ $0 < \theta < \Pi$; $0 < \Phi < \Pi$.	7	L3	CO3
		Derive radiation resistance of a small single turn circular oop antenna with uniform phase current	8	L3	CO4
		PART B			
3		Prove that directivity for a source with Unidirectional pattern of U _m COS ⁿ θ, where n can be any number	9	L3	CO3

Page: 1/2

expressed as D=2(n+1).			
b Derive an expression for array factor & relative field of linear array of 'n' isotropic point sources of equal magnitude and spacing.		L3	CO3
c Draw the structure of a pyramidal horn antenna. Use the principle of equality of path length and bring out the optimum horn dimensions.(CO4)		L3	CO4
OR			
4 a Obtain field expression of two isotropic point sources of same amplitude and phase.	9	L3	CO3
b Derive an expression for radiation resistance of short electric dipole.	8	L3	CO3
c Discuss the following antenna types (i) Helical Antenna ii) Yagi Uda Array	8	L2	CO4

Prepared by: Mahabaleshwara Bhat P

HOD